杏彩彩票登录 News

杏彩彩票官网·金属基复合材料应用领域、研究现状

发布时间:2024-02-02 | 作者:杏彩彩票官网 浏览次数:22次

  新一代装备技术的提升,对基础材料的性能要求愈加苛刻。在传统金属材料不能满足要求的状况下,金属基复合材料已经成为不可替代的战略性新材料,其应用广度、发展速度和生产规模已成为衡量一个国家材料科技水平的重要标志之一。目前,全球金属基复合材料市场基本上被西方发达国家所垄断,超过总质量2/3的金属基复合材料为美国、欧洲、日本等发达国家或地区所使用。我国在1981年启动了金属基复合材料研究,经历了艰难的起步阶段和初期工程验证阶段,目前步入普及与快速发展阶段。

  金属基复合材料(metal matrix composite,简称MMCs)一般是以金属或合金为基体,并以纤维、晶须、颗粒等为增强体的复合材料。主要有以高性能增强纤维、晶须、颗粒等增强的金属基复合材料;金属基体中反应自生增强复合材料;层板金属基复合材料等品种。这些金属基复合材料既保持了金属本身的特性,又具有复合材料的综合特性。通过不同基体和增强物的优化组合,可获得各种高性能的复合材料,具有各种特殊性能和优异的综合性能。

  MMCs问世至今已有40余年,由于具有高的比强度、比模量、耐高温、耐磨损以及热膨胀系数小、尺寸稳定性好等优异的物理性能和力学性能,克服了树脂基复合材料在宇航领域中使用时存在的缺点,得到了令人瞩目的发展,成为各国高新技术研究开发的重要领域。由于金属基复合材料加工工艺不够完善、成本较高,还没有形成大规模批量生产,因此仍是当前研究和开发的热点。

  金属基复合材料除力学性能优异外,还具有某些特殊性能和良好的综合性能,应用范围广。此外,金属基复合材料品种繁多,有各种分类方式,以下从基体、增强体以及用途三方面进行分类。

  有铝基、镁基、钛基、锌基、铜基、铅基、镍基、耐热金属基、金属间化合物基等复合材料。铝、镁、钛、铜合金及金属间化合物合金是目前应用广泛、发展迅速的轻金属合金。用其制成的各种高比强度、高比模量的轻型结构件广泛地应用于航天、航空和汽车工业等领域。目前,国内外学者研究的金属基复合材料基体主要集中在铝和镁两个合金系上。下面将对上述的铝基、镍基、钛基复合材料首先作介绍。

  这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利的条件。在制造铝基复合材料时通常并不是使用纯铝而是用各种铝合金。这主要是由于与纯铝相比铝合金具有更好的综合性能,至于选择何种铝合金作为基体。则往往根据对复合材料的性能需要来决定。

  这种复合材料是以镍及镍合金为基体制造的。由于镍的高温性能优良,因此这种复合材料主要用于制造高温下工作的零部件。人们研制镍基复合材料的一个重要目的,即是希望用它来制造燃汽轮机的叶片,从而进一步提高燃汽轮机的工作温度。但目前由于制造工艺及可靠性等问题尚未解决,因而还未能取得满意的结果。

  钛比任何其他的结构材料具有更高的比强度。此外,钛合金在中温时比铝合金能更好地保持其强度。因此,对飞机结构来说,当速度从亚音速提高到超音速时,钛合金比铝合金显示出了更大的优越性。随着飞行速度的进一步加快,还需要改变飞机的结构设计,采用更细长的机翼和其他翼型,为此需要高刚度的材料,而纤维增强钛合金可满足这种对材料刚度的要求。

  增强体的选择,要求与复合材料基体结合时的润湿性较好,并且增强体的物理、化学相容性好,载荷承受能力强,尽量避免增强体与基体合金之间产生界面反应等。增强相的选择并不是随意的,选择一个合适的增强体需要从复合材料应用情况、制备方法以及增强体的成本等诸多方面综合考虑。金属基复合材料按照增强体可分为连续纤维增强金属基复合材料、非连续增强金属基复合材料、层状复合材料和自生增强复合材料等。

  连续纤维增强金属基复合材料是利用高强度、高模量、低密度的碳(石墨)纤维、硼纤维、碳化硅纤维、氧化铝纤维等增强体与金属基体组成高性能复合材料。通过基体、纤维类型、纤维排布方向、含量、方式的优化设计组合,可获得各种高性能。在纤维增强金属基复合材料中纤维具有很高的强度、模量,是复合材料的主要承载体,增强基体金属的效果明显。基体金属主要起固定纤维、传递载荷、部分承载的作用。连续纤维增强金属因纤维排布有方向性,其性能有明显的各向异性,可通过在不同方向上纤维的排布来控制复合材料构件的性能。在沿纤维轴向上具有高强度、高模量等性能,而横向性能较差,在设计使用时应充分考虑。由于原材料连续纤维价格昂贵,制造工艺复杂、成本很高,阻碍了它们的实际应用。

  非连续增强金属基复合材料,是由短纤维、晶须、颗粒为增强体与金属基体组成的复合材料。在此类复合材料中金属基体仍起着主导作用,增强体在基体中随机分布,其性能呈各向同性。非连续增强体的加入,明显提高了金属的耐磨、耐热件,提高了高温力学性能、弹性模量,降低了热膨胀系数等。根据非连续增强体的来源可分为外加(ex-situ)和内生(insitu)两种。外加增强的金属基复合材料是指其增强体是从外部加入,并使其均匀分布于金属基体中。内生增强的金属基复合材料的基本原理,是在一定条件下通过元素之间或元素与化合物之间的化学反应,在金属基体内原位自生成一种或几种高硬度、高弹性模量的陶瓷增强相,从而达到强化金属基体的目的。与外加增强的金属基复合材料相比,内生增强的金属基复合材料具有如下特点。

  a)增强体是从金属基体中原位形核、长大的热力学稳定相,因此,增强体表面无污染,避免了与基体相容性不良的问题,且界面结合强度高。

  b)通过合理选择反应元素(或化合物)的类型、成分从其反应性可有效地控制原位生成增强体的种类、大小、分布和数量。

  d)从液态金属基体中原位形成增强体的工艺,可用铸造方法制备形状复杂、尺寸较大的近净成形构件。

  综上所述,非连续增强金属基复合材料最大的特点是,可以用常规的粉末冶金、液态金属搅拌、液态金属挤压铸造、真空压力浸渍、原位反应合成等方法制造,并可用铸造、挤压、锻造、轧制、旋压等加工方法进行加工成形,制造方法简便,制造成本低,适合于大批量生产,在汽车、电子、航空、仪表等工业中有广阔的应用前景。

  层状(层板)复合材料是以韧性和成形性较好的金属作为基体材料,并含有重复排列的高强度高模量片层状增强体的复合材料。由于层状(层板)复合材料是将两种或两种以上优化设计和选择的层板相互完全黏结在一起组成,所以它具有单一板材所难以达到的综合性能,如抗腐蚀、耐磨、抗冲击、高导热、导电性、高阻尼等性能特点。层板复合材料可由金属与金属板、金属与非金属板组合而成,种类繁多,可满足各种需求。其中,金属层板复合材料、金属一聚合物层板复合材料发展迅速,已有批量生产,逐渐发展成一类工程材料,在汽车、船舶、化工、仪表等工业中广泛应用。

  在金属基体内通过反应、定向凝固等途径生长出颗粒、晶须、纤维状增强物,组成自生金属基复合材料。包括反应自生和定向自生、大变形。

  以高比强度、高比模量、尺寸稳定性、耐热性等为主要性能特点,用于制造各种航天、航空、汽车、先进武器系统等高性能构件。

  以高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合为其主要特性,用于电子、仪器、汽车等工业。

  智能复合材料是一类基于仿生学概念发展起来的高新技术材料,它实际上是集成了传感器、信息处理器和功能驱动器的新型复合材料。

  金属基复合材料的性能取决于所选用金属或合金基体和增强体的特性、含量、分布等。通过优化组合,不仅可以获得基体金属或合金具备的良好的导热、导电性能,抗苛刻环境能力,抗冲击、抗疲劳性能和断裂性能,还可以具有高强度、高刚度,出色的耐磨性能和更低的热膨胀系数(CTE)。综合归纳金属基复合材料的特性如下。

  由于在金属基体中加入了适量的高强度、高模量、低密度的纤维、晶须、颗粒等增强体,明显提高了复合材料的比强度和比模量,特别是高性能连续纤维-硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,具有很高的强度和模量。密度只有1.85g/cm³的碳纤维的最高强度可达到7000MPa,比铝合金强度高出10倍以上,石墨纤维的模量为230-830GPa。硼纤维密度为2.4-2.6g/cm³,强度为2300-8000MPa,模量为350-450GPa。碳化硅纤维密度为2.5-3.4g/cm³,强度为3000-4500MPa,模量为350-450GPa。加入30%-50%的高性能纤维作为复合材料的主要承载体,复合材料的比强度、比模量成倍地高于基体合金的比强度和比模量。图1所示为典型的金属基复合材料与基体合金性能的比较。用高比强度、高比模量复合材料制成的构件质量轻、刚性好、强度高,是航天、航空技术领域中理想的结构材料。

  金属基复合材料中金属基体占有很高的体积分数,一般在60%以上,因此仍保持金属所特有的良好导热和导电性。良好的导热性可以有效地传热,减小构件受热后产生的温度梯度和迅速散热,这对尺寸稳定性要求高的构件和高集成度的电子器件尤为重要。良好的导电性可以防止飞行器构件产生静电聚集的问题。

  在金属基复合材料中采用高导热性的增强体还可以进一步提高金属基复合材料的热导率,使复合材料的热导率比纯金属基体还高。为了解决高集成度电子器件的散热问题,现已研究成功的超高模量石墨纤维、金刚石纤维、金刚石颗粒增强的铝基、铜基复合材料的热导率比纯铝、铜还高,用它们制成的集成电路底板和封装件可有效迅速地把热量散去,提高了集成电路的可靠性。

  金属基复合材料中所用的增强物碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等既具有很小的热膨胀系数,又具有很高的模量,特别是高模量、超高模量的石墨纤维具有负的热膨胀系数。加入相当含量的增强体不仅大幅度提高材料的强度和模量,也使其热膨胀系数明显下降并可通过调整增强体的含量获得不同的热膨胀系数,以满足各种工况要求。例如,石墨纤维增强镁基复合材料,当石墨纤维的体积分数达到48%时,复合材料的热膨胀系数为零,即在温度变化时使用这种复合材料做成的零件不发生热变形,这对人造卫星构件特别重要。通过选择不同的基体金属和增强体,以一定的比例复合在一起,可得到导热性好、热膨胀系数小、尺寸稳定性好的金属基复合材料。

  由于金属基体的高温性能比聚合物高很多,增强纤维、晶须、颗粒在高温下又都具有很高的高温强度和模量。因此金属基复合材料具有比基体金属更高的高温性能,特别是连续纤维增强金属基复合材料。在复合材料中纤维起着主要承载作用,纤维强度在高温下基本上不下降,可保持到接近金属熔点,并比金属基体的高温性能高许多。如钨丝增强耐热合金,其1100℃,100h高温持久强度为207MPa,而基体合金的高温持久强度只有48MPa;又如石墨纤维增强铝基复合材料,在500℃高温下仍具有600MPa的高温强度,而铝基体在300℃强度已下降到100MPa以下。因此金属基复合材料被选用在发动机等高温零部件上,可大幅度提高发动机的性能和效率。总之,金属基复合材料做成的零构件比金属材料、聚合物基复合材料零件能在更高的温度条件下使用。

  金属基复合材料,尤其是陶瓷纤维、晶须、颗粒增强的金属基复合材料具有很好的耐磨性。这是因为在基体金属中加入了大量的陶瓷增强体,特别是细小的陶瓷颗粒所致。陶瓷材料硬度高、耐磨、化学性质稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。图2是碳化硅颗粒增强铝基复合材料的耐磨性与基体材料和铸铁耐磨性的比较,可见SiCp/Al复合材料的耐磨性比铸铁还好,比基体金属高出几倍。SiCp/Al复合材料的高耐磨性在汽车、机械工业中有重要应用前景,可用于汽车发动机、制动盘、活塞等重要零。