日本在半导体界一直以设备和材料笑傲群雄,2019 年一则禁令一度扼住韩国半导体喉咙,涉及材料包括高纯氟化氢、氟聚酰亚胺、感光剂光刻胶,直到几个月前,受伤的双方才握手言和。
高纯氟化氢凭什么与光刻胶并列在一起?它是一种湿电子化学品(Wet Chemicals),与电子气体相似,作为半导体产品的“血液”,没有它,芯片将无法生产。
本文是“果壳硬科技”策划的“国产替代”系列第二十六篇文章,关注湿电子化学品。在本文中,你将了解到:哪些湿电子化学品会用在半导体生产中,有什么特殊要求,国内外发展现状以及国内发展的前路。
行业中,湿电子化学品有多种称呼,国际上它被称为工艺化学品(Process Chemicals),国内则称其为“电子级试剂”“超净高纯化学试剂”等。
晶圆制造材料里,14% 都花费在湿电子化学品上[1],用于芯片的清洗、腐蚀及晶圆的清洗等,它决定着最终的成品率、电性能和可靠性。[2]
比如说,光刻工艺结束后,刻蚀工艺就需要使用特定的刻蚀液与薄膜发生化学反应;刻蚀后,需要通过剥离液溶解未曝光部分的光刻胶;整个生产过程中,难免会沾染灰尘、颗粒、金属或离子导电污染物,清洗液便能去除这些杂质;金属化工艺中,铜电镀液是铜互连工艺不可缺少的化学品。
除了集成电路,平板显示、太阳能电池也离不开湿电子化学品,由于其自身功能性强、附加值高,拥有传导到终端整机产品性能的能力,所以行业也普遍认为湿电子化学品是撬动产业的重要杠杆。
严格来说,只要是在半导体生产过程中的液体、糊状物、粘稠物,都算湿电子化学品,不过行业所说的湿电子化学品一般特指超高纯试剂。
芯片制造容不下任何一粒沙,湿电子化学品中的金属离子和硼、硅、砷、磷、硫、氯及有机碳等非金属离子杂质也会直接影响芯片的 3D 结构。[4]
在纯度方面,全球均执行 SEMI 国际标准,根据金属杂质、控制粒径、颗粒数、IC 线 是最高等级,不同分级适用于不同应用。其中,太阳能光伏一般只需 G1 水平,显示面板和 LED 一般为 G2~G3 水平,半导体则对应 G4~G5,技术壁垒最高。
通用湿电子化学品是制造工艺中被大量使用的液体化学品,一般为单成份、单功能化学品,如氢氟酸、硫酸、硝酸、磷酸、盐酸、过氧化氢、氢氧化钠、氢氧化钾等;
功能湿电子化学品是满足制造特殊工艺需求的复配类化学品,如显影液、剥离液、蚀刻液、稀释液、清洗液等,涉及光刻、刻蚀、离子注入、CMP 等工艺。[6]
具体而言,通用化学品中硫酸、氢氟酸、硝酸、磷酸、盐酸、双氧水、氨水、异丙醇消耗量尤为巨大,功能性化学品中稀释液、显影液、刻蚀液、剥离液、缓冲氧化物蚀刻剂(BOE)、清洗液、电镀液的消耗量随工艺复杂化而增加。
对芯片来说,制程工艺越先进,湿电子化学品使用量就越大。SEMI 统计数据显示,从 28nm 到 5nm 总工艺步骤将由 400 次增加至 1200 以上,进一步带动湿电子化学品用量提升。[3]
当然,不光液体本身要纯净,在包装、运输及使用过程中,都要足够洁净,可以说,湿电子化学品每个环节都存在技术壁垒:
原料除杂:原料是制备高纯湿电子化学品的关键,在高效除杂方面,除杂剂的选择、工艺参数的完善、除杂体系的优化等均需投入;[11]
提纯:湿电子化学品的纯化重点不在含量,而在去除有害金属离子含量和颗粒含量,纯化方法主要包括蒸馏和精密分馏、离子交换、分子筛分离、气体吸收和超净过滤 5 种方法,几种提纯技术各有所长;[9]
混配:配比和配方是关键,就像调配调料一样,不仅要经验丰富,还要合乎口味偏好,此外,调配工艺过程温度、压力、流量、配比、排气量等指标都与调配结果息息相关;
副产物应用:大多湿电子化学品生产过程中都存在大量副产物,比如电子级氢氟酸除杂过程中副产的氟硅酸钡,在经过多次洗涤干燥后可直接外售,因此副产物梯级利用开发是生产企业的重点;
检测:制造芯片过程中,湿电子化学品污染情况决定着企业的生命线,随着芯片步入纳米级,对金属及非金属杂质含量要求已达到 10-12数量级,过去传统的 GF-AAS、ICP-OES 痕量元素检测方法已被淘汰,现在常用分析测试手段是 ICP-MS、ICP-MS / MS 离子色谱法,目前国外分析系统包括美国的 ESI、日本的 IAS、中国的金兆益,国内则包括中国杭州谱育科技等;
包装运输:湿电子化学品大多属易燃、易爆、强腐蚀的危险品,运输过程中既不能泄露,也不能污染,目前最广泛使用的包装材料是高密度聚乙烯(HDPE)、四氟乙烯和氟烷基乙烯基醚共聚物(PFA)、聚四氟乙烯(PTFE),对于不同化学品包装要求也各不相同;
回收:芯片生产中,废液排放量非常惊人,这些废液多数具备生物毒性,且污染环境,回收不仅具备环保意义,还能够减少企业化学品消耗量。迄今为止,湿电子化学品大多用于清洗和干燥,使用后杂质含量并不多,且大多杂质种类已知,定向去除杂质便可重复利用,减少企业开销。[8]
集成电路用湿电子化学品客户较专,但也具备一定市场规模。综合中国电子材料行业协会、TECHCET 数据,2022 年~2025 年全球集成电路用湿化学品市场规模将从 56.90 亿美元增长至 63.81 亿美元,受下游芯片需求量减少影响,2023 年全球市场规模可达 51 亿美元,同比略微下降,其中,其中中国总体市场规模将在 2025 年增长至 10.27 亿美元。[3][12]
从关键品类化学来讲,硫酸、过氧化氢、Cu PERR(蚀刻后清洗剂)、CMP 抛光液是 2023 年全球湿电子化学品使用量前四,分别占比 23%、20%、14%、14%,其次是氨水、磷酸、AI PERR(蚀刻后清洗剂)、氢氟酸、异丙醇、盐酸、硝酸。
一代产品,一代材料,湿电子化学品技术门槛高、投入大、更新换代快,加之中国起步比国外晚几十年,想在市场上竞争并不容易。
目前,欧、美、日、韩大厂商占据全球湿电子化学品 70% 以上市场规模,格局相对稳定。数据显示,欧美约占全球 32% 市场份额,日本占 29% 全球市场份额,中国则仅占 12%。[13]
具体到产品方面,国产主要集中在太阳能电池等领域的低端产品,技术门槛低,竞争激烈;中端的平板显示及半导体产品中韩相互竞争;高端产品则由德国、美国和日本主导。[14]
欧美老牌化工企业产品等级普遍在 G4 以上,与半导体芯片制造业发展几乎保持同一步调,代表企业包括德国巴斯夫(Basf)、德国默克()、美国亚什兰(Ashland)、美国 Arch 化学品、美国霍尼韦尔(Honeywell)、美国 Mallinckradt Baker、美国 Avantor Performance Materials、美国 ATMI 等。[15]
日本产业发展虽晚于欧美,但发展速度快,目前工艺技术水平基本与欧美企业持平,代表企业包括关东化学、三菱化学、京都化工、日本合成橡胶、住友化学、和光纯药工业 (Wako) 、宇部兴产(UBE)、Stella-Chemifa 等。[5]
韩国和中国地区湿电子化学品也在高速发展,其生产技术和工艺水平已可在高端领域与欧美和日本相竞争,代表企业包括韩国东友精细化工、韩国东进世美肯、中国东应化、中国联仕电子化学、鑫林科技等。
我国湿电子化学品已取得一定突破,在通用化学品上初步形成产业规模,但在超高纯净试剂上,无论是质量,还是数量都难以满足电子工业需求。2019 年中国企业在超净高纯化学品市场供应上仅占中国市场的 9%。[16]
数据显示,2022 年我国湿电子化学品整体需求量增长至 261.69 万吨,去年则为 213.52 万吨,预计 2023 年需求量将达到 307.03 万吨。其中集成电路、显示面板、光伏行业需求分别为 96.59 万吨、116.6 万吨、93.84 万吨。预计至 2025 年,国内需求总量可增加至 370 万吨,其中集成电路、显示面板、光伏行业需求量分别为 106.94 万吨、149.5 万吨、113.12 万吨。[7]
需求量与市场并非对等,越高端的产品价值才越高。2021 年,中国湿电子化学品市场规模为 137.8 亿元,其中集成电路、显示面板、光伏行业市场规模分别为 52 亿元、62 亿元和 17 亿元,占比分别为 40%、47% 和 13%,预计 2022 年~2028 年国内市场规模可从 163.9 亿元增长至 301.7 亿元。[7]
目前,我国湿电子化学品领域整体国产化率约为 35%,集成电路用湿电子化学品国产化率约为 23%。其中,高端半导体所需氢氟酸国产率约为 30%、硝酸国产率约为 50%、盐酸国产率约为 20%、硫酸国产率约为 10%、氨水国产率约为 40%、过氧化氢国产率约为 70%[11],NMP、四甲基氢氧化铵等产品在高端领域的应用则仍是空白。[17]
话虽如此,我国进步非常迅速,目前已实现集成电路、平板显示、太阳能电池全线国产替代,换句话说就是每个领域都至少有产品可用。
迄今为止,国内从事湿化学品研究生产的企业已有 40 多家,并分为湿电子化学品专业供应商、电子材料平台型企业和大型化工企业三类[18]。包括江阴江化微、江阴润玛电子、江苏艾森、浙江凯盛氟、晶瑞电子、杭州格林达、湖北兴福电子、中巨芯科技、多氟多、安集微、上海新阳、沧州信联、无锡三开、镇江润晶等,客户不乏台积电、中芯国际、长电科技、华润微、士兰微等先进代工厂、封装厂、IDM 公司。
具体而言,电子级硝酸、氢氟酸和磷酸等已取得较大突破,已进入国际供应链,电子级硫酸、盐酸、氨水和双氧水等在国内实现部分批量应用[16]。比如。